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Abstract: Let G1, G2, ...Gn be n distinct maximum planar isomorphic graphs. n − 1 edges are 

connected between all the n graphs whose end vertex are some Gi and Gj, except the end graphs to 

form a connected graph G defined as n-bridge-connected is introduced. This paper focus on finding 

bridge connected specifically for n star graphs and cycle graphs. 
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1. Introduction 

A Graph denoted by G = G (V (G), E(G)), where V (G) is the vertex set and E(G) is the edge set 

of G. The graphs considered in this paper are undirected, finite and simple. A graph G is said to be 

connected if there is a path between any two distinct vertices of G. Let x, y ∈ V (G). Let d (x, y) be the 

length of the shortest path from x to y. The distance between two vertices in a connected graph G is the 

number of edges in the shortest path between them. [8] 

A walk of a graph G is a finite, alternating sequences of vertices and edges say, v0, e1, v1, e2, v2, ...., vn−1, en, 

vn beginning with v0 and ending with vn such that each edge ei is incident with vi−1 and vi. The 

number n is called the length of the walk. An open walk in which no vertex appears more than once is 

called a path. A closed path is called a cycle. A graph G is called acyclic if it has no cycles. A 

connected acyclic graph is called a tree. One of the graph invariants is the topological index introduced 

by Harold Wiener in 1947, have significant attention in the field of Chemical Graph theory till date. This 

field has wide applications in Chemical sciences, medical sciences which in turn used as a tool for 

modelling chemical properties of molecular bonds and thereby able to study the structure of organic 

compounds.[10] 

The Wiener index of a connected graph denoted by W (G) is defined as the sum of all distances 

between every pair of vertices of G [15]. The Wiener index of a graph was the first reported topological 

index based on graph distances. Wiener (1947, 1948) was perhaps the first one to analyze some aspects of 

branching by fitting experimental data for several properties of alkane compounds, using the deviation of his 

path number W in branched alkanes from that of the linear isomeric compound [10]. 

 
2. Preliminaries 

A graph is said to be planar, if its edges intersect only at their end points. A simple graph G is said to 

be Maximum planar, if it is planar and adding any edge on the existing vertex dissatisfy planar 

property or in other words, there exist zero crossing of the edges in the graph G. 

The maximum Wiener index of maximum planar graph has been widely studied.[9] Since maximum 

planar graphs resembles the structure of molecular bonding, the study connecting many maximum planar 

graphs into a single structure and finding the Wiener index helps to analyse the properties of molecules 

with n-distances such as, alkanes whose main commercial sources are petroleum and natural gas. [1 to 7] 

The present study introduces bridge- connected in finding Wiener index for n-maximum planar graphs 

connected together to form a massive large molecular structure specifically for cycle and star graphs. 
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Cycle graphs Cn helps in studying cycloalkanes such as cyclobutene resembles C4, Cyclopentane and 

methyl cyclopentane resembles C5, Cyclohexane resembles C6 and many other structures [9,10,13]. Star 

graphs resembles neurological structure in brain networks, wherein many star graphs are connected and 

finding the Wiener index of connected star graphs Sn helps to analyse assortativity index [5].  

3. The Wiener index of n-bridge connected maximum planar graphs 

Definition 4.1:  

Bridge-connected: Two isomorphic maximum planar graphs are said to be 1-bridge-connected, if 

there exist an edge whose end points are connected to any vertex of two graphs. For the n-bridge-

connected between maximum planar n-graphs, G1, G2, ..., Gn, there exist n − 1 edges connected, such 

that there exists unique edge between any Gi and Gj except between G1 and Gn, symmetrically arranged in 

particular order to form a single connected graph G, such that even after rotation of these graphs 

retains the original structure. 

Basically, most of the molecules appear in cycle manner, the cycle graph Cm, m ≥ 4 are taken into 

account which is followed in this next section. 

 

4. The Wiener index of n-bridge connected cycle graphs , m is odd or even: 

Example 4.1:  

4.1.1. The Wiener index of 2-bridge connected  graphs:   

Let G1 and G2 be two non-overlapping C4 graph with vertex sets {u1, u2, u3, u4} and {v1, v2, v3, v4} 

respectively. Two graphs W (G1) +2 W (G2) is obtained by joining any vertex of G1 to any vertex of G2 

by new edge. 

Since  

 

 
Figure.1:  2-bridge connected  graphs 

Since G1 and G2 are connected by an edge (u4, v1) 

W (G1) + W (G2) = W (G1) + W (G2)  

                               +( W (G1) +2 W (G2)) 

where,  

 
= d(v1, u1) + ... + d(v1, u4)  

+ d(v2, u1) + ... + d(v2, u4) 

+d(v3, u1) + ... + d(v3, u4)  

+ d(v4, u1) + ... + d(v4, u4) 

= (1+2+2+3)+2(2+3+3+4) +(3+4+4+5) 

= [(n-1)+2n +(n+1)]+2[n+2(n+1) 

+(n+ 2)]+[(n + 1)+2(n+2)+(n+3)] 
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 = C4 (U2), say, Therefore,  

W (G1) + W (G2) = 2W (C4) + C4(U2) …(4.1) 

Calculation:  

 
 

4.1.2. The Wiener index of 3-bridge connected  graphs: 

Let G1, G2 and G3 be three non-overlapping C4 graph with the vertex sets {u1, u2, u3, u4} , {v1, v2, v3, 

v4} and {w1, w2, w3, w4} respectively.3-bridge-connected graphs W (G1) +2 W (G2) +3 W (G3) is obtained 

by joining single edge that has end point in W (G1) +2 W (G2) and G3 horizontally. 

Since  there will be 3 copies of C4   . Then, 

 
 

 
Figure.2:  3-bridge connected  graphs 

Since W (G1) +2 W (G2) and G3 are connected by an edge (v4, w1) 

W (G1) + W (G2) + W (G3) =  

W (G1) + W (G2) + W (G3)  

+(W (G1) +2 W (G2)) +(W (G2)+2W (G3)) 

+(W (G1)+2W (G2)+3W(G3)) 

where,  

 
= d(w1, u1) + ... + d(w1, u4)  

+ d(w2, u1) + ... + d(w2, u4) 

+d(w3, u1) + ... + d(w3, u4)  

+ d(w4, u1) + ... + d(w4, u4) 

=(4+5+5+6)+2(5+6+6+7)+(6+7+ +8) 

= [(n + 1) + 2(n + 2) + (n + 3)]  

+ 2[(n + 2) + 2(n + 3) + (n + 4)] 

+[(n + 3) + 2(n + 4) + (n + 5)] 

 = C4(U3) (say). Therefore, 

W (G1) + W (G2) + W (G3)  =  

3W (C4) +2 C4 (U2)+ C4(U3) …..(4.2) 

Calculation:  

 
 

4.1.3. The Wiener index of 4-bridge connected  graphs: 

Let G1, G2, G3 and G4 be four non-overlapping C4 graphs with the vertex sets {u1, u2, u3, u4},{v1, v2, v3, 

v4} ,{w1, w2, w3, w4} and {x1, x2, x3, x4} respec- tively. 4-bridge-connected graphs W (G1) +2 W (G2) +3 W 

(G3) +4 W (G4) is obtained by joining single edge that has end point in W (G1) +2 W (G2) +3 W (G3) and 

G4 horizontally. 

Since  there will be 4 copies of C4  , . Then, 
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 Z1

1 

Z4
 

 

 
Figure.3:  4-bridge connected  graphs 

 

Since W (G1) +2 W (G2) +3 W (G3) and W( G4) are connected by an edge (w4, x1), 

 W (G1) + W (G2) + W (G3) + W (G4)  

= W (G1) + W (G2) + W (G3) + W (G4)  

+(W (G1) +2 W (G2)) + (W (G2) +2 W (G3))  

+ (W (G3) +2 W (G4))  

+ (W (G1) +2W (G2) +3 W (G3))  

+ (W (G2) +2 W (G3) +3 W (G4))  

+ (W (G1) +2 W (G2) +3W (G3) +4 W (G4)) 

where,  

 
= d(x1, u1) + ... + d(x1, u4)  

+ d(x2, u1) + ... + d(x2, u4) 

+d(x3, u1) + ... + d(x3, u4)  

+ d(x4, u1) + ... + d(x4, u4) 

=(7+8+8+9)+2(8+9+9+10)+(9+10+10+ 11) 

= [(n + 3) + 2(n + 4) + (n + 5)]  

+ 2[(n + 4) + 2(n + 5) + (n + 6)] 

+[(n + 5) + 2(n + 6) + (n + 7)]  

= C4(U4) (say). Therefore, 

W (G1)+ …  + W (G4)   = 4W (C4) 

+3 C4 (U2)+ 2 C4(U3)+ C4(U4)  …..(4.3) 

Calculation: 

 

4.1.4. The Wiener index of n-bridge connected  graphs: 

Let G1,G2,...,Gn be n non-overlapping C4 c y c l e  graphs with  vertex sets {u1, u2, u3, u4} , {v1, v2, 

v3, v4},..., {z1, z2, z3, z4} respectively. n-bridge-connected graphs W (G1) +2 W (G2) +3 W (G3) +4 ... +n W 

(Gn) is obtained by joining sin- gle edge that has end point in W (G1) +2 W (G2) +3 ... +n−1 W 

(Gn−1) and Gn horizontally. Therefore there exists a single edge whose end points lies in every pair of 

cycles (G1, G2, ...Gn) (except the end cycles) which are bridge connected systematically arranged in 

horizontal manner. 

Since  there will be n copies of C4  , . Then, 
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U1 

 

G1                 G2          G3                      Gn 

Figure.4:  n-bridge connected  graphs 

 

Since W (G1) +2 W (G2) +3 ... +n−1 W (Gn−1) and W ( Gn) are connected by an edge (y4, z1), 

W (G1) + W (G2) + ... + W (Gn)  

= W (G1) + W (G2) + ... + W (Gn) 

+(W (G1) +2 W (G2)) + (W (G2) +2 W (G3)) 

 + ... + (W (Gn−1) +2 W (Gn)) 

+(W (G1) +2 W (G2) +3 W (G3)) 

 + ... + (W (Gn−2) +2 W (Gn−1) +3 W (Gn)) 

+... + (W (G1) +2 W (G2) +3... +n W (Gn)) 

where,  

 
= d(z1, u1) + ... + d(z1, u4)  

+ d(z2, u1) + ... + d(z2, u4) 

+d(z3, u1) + ... + d(z3, u4)  

+ d(z4, u1) + ... + d(z4, u4) 

=1[(n - 1 + 2t) + 2(n + 2t) + (n + 1 + 2t)] 

= + 2[(n + 2t) + 2(n + 1 + 2t) + (n + 2 + 2t)] 

= + 1[(n + 1 + 2t) + 2(n + 2 + 2t)  

+ (n + 3 + 2t)] = C4(Un)(say). Therefore, 

W (G1)+ …  + W (Gn)   = n W (C4) 

+(n-1) C4 (U2)+ (n-2) C4(U3)+(n-3) C4(U4)  +…+1 C4 (Un)…..(4.4) 

4.1.5. Theorem 4.1: Let G1, G2, ..., Gn be n distinct non-overlapping cycle graphs, Cm, m ≥ 3 with 

vertex sets {u1, u2, ..., um} , {v1, v2, ..., vm} , {w1, w2, ..., wm} …{z1, z2, ..., zm} respectively. These n-graphs 

are n − 1 connected by an edge between every pair of cycles, except the pair G1, Gn to form a single 

graph. 

 Then, W (G1 + G2 + G3 + ... + Gn) 

= W (G1) + W (G2) + ... + W (Gn) 

+W (G1 +2 G2) + W (G2 +2 G3)  

+ ... + W (Gn−1 +2 Gn)+W (G1 +2 G2 +3 G3) 

+W (G2 +2 G3 +3 G4)+...+W (Gn−2 +2 Gn−1 +3 Gn) +..... + W (G1 +2 G2 +3 .... +N Gn) 

=n W(Cm)  

 

 

 
 

 
 



BioGecko                                            Vol 12 Issue 03 2023  

                                                            ISSN NO: 2230-5807 

608 

A Journal for New Zealand Herpetology 

 

 
 

where n = 1, 2, ..., ∞ and i1, i2, ...ik = 1, 2, ..., N respectively. 

Proof: 

Let G1, G2, ..., Gn be n non-overlapping Cm graphs with m-cycle  and  n  number of vertex sets, 

say,{u1, u2, u3, u4} , {v1, v2, v3, v4} , ..., {z1, z2, z3, z4} respectively. n-bridge-connected graphs W (G1) +2 

W (G2) +3 W (G3) +4 ... +n W (Gn) is obtained by joining sin- gle edge that has end point in W (G1) 

+2 W (G2) +3 ... +n−1 W (Gn−1) and Gn horizontally. Therefore, there exists a single edge whose end points 

lies in every pair of cycles (G1, G2, ...Gn) (except the end cycles) which are bridge connected 

systematically arranged in horizontal manner. Since, 

     

, there will be n copies of Cm,  Then, 

 
 

 
Using the above example, we prove the following cases. 

Case (i): When m is even, where m ≥ 4  

Let m = 4 

From equation Eq. (4.1) to Eq. (4.4), we have 

W (G1) + W (G2) + ... + W (Gn) 

=nW (C4) + (n - 1)C4(U2) + (n - 2)C4(U3)  

+ (n - 3)C4(U4)... + C4(Un) ………(4.5) 

where, 

C4(Un) = 1[1(n -1 + 2t) + 2(n + 2t) + 1(n + 1 + 2t)]+ 2[1(n + 2t) + 2(n + 1 + 2t) + 1(n + 2 + 

2t)]+1[1(n+1+2t) + 2(n +2+2t)+1(n+3 + 2t)] 

                                                                ……….(4.6) 

Let m = 6 

 

 
Figure.5:  n-bridge connected  graphs 

 

From equation Eq. (4.1) to Eq. (4.4), we have 

W (G1) + W (G2) + ... + W (Gn) 

=nW (C6) + (n - 1)C6(U2) + (n - 2)C6(U3)  

+ (n - 3)C6(U4)... + C6(Un) ………(4.7) 

where, 

C6(Un) = 1[1(n − 1 + 2t) + 2(n + 2t) + 2(n +1+ 2t) + 1(n + 2 + 2t)]+ 2[1(n + 2t) + 2(n + 1 + 2t) 

+ 2(n + 2 + 2t) + 1(n + 3 + 2t)]+ 2[1(n + 1 + 2t) + 2(n + 2 + 2t) + 2(n + 3 + 2t) + 1(n + 4 + 

2t)]+ 1[1(n + 2 + 2t) + 2(n + 3 + 2t) + 2(n + 4 + 2t) + 1(n + 5 + 2t)] ……………….(4.8) 



BioGecko                                            Vol 12 Issue 03 2023  

                                                            ISSN NO: 2230-5807 

609 

A Journal for New Zealand Herpetology 

 

Case (ii): When m is odd, where m ≥ 5 

Let m=5 

 

 

 
Figure.6:  n-bridge connected  graphs 

 

From equation Eq. (4.1) to Eq. (4.4), we have 

W (G1) + W (G2) + ... + W (Gn) 

=nW (C5) + (n - 1)C5(U2) + (n - 2)C5(U3)  

+ (n - 3)C5(U4)... + C5(Un) ………(4.9) 

Where, 

C5(Un) = 1[1(n − 1 + 2t) + 2(n + 2t) + 2(n + 1 + 2t)]+ 2[1(n + 2t) + 2(n + 1 + 2t) + 2(n + 2 + 

2t)]+ 2[1(n + 1 + 2t) + 2(n + 2 + 2t) + 2(n + 3 + 2t)] ………………….(4.10) 

Let m=7 

From equation Eq. (4.1) to Eq. (4.4), we have 

W (G1) + W (G2) + ... + W (Gn) 

=nW (C7) + (n - 1)C7(U2) + (n - 2)C7(U3)  

+ (n - 3)C7(U4)... + C7(Un) ………(4.11) 

Where, 

 
Figure.7:  n-bridge connected  graphs 

 

C7(Un) = 1[1(n − 1 + 2t) + 2(n + 2t) + 2(n + 1 + 2t) + 2(n + 2 + 2t)]+ 2[1(n + 2t) + 2(n + 1 + 2t) 

+ 2(n + 2 + 2t) + 2(n + 3 + 2t)]+ 2[1(n + 1 + 2t) + 2(n + 2 + 2t) + 2(n + 3 + 2t) + 2(n + 4 + 

2t)]+ 2[1(n + 2 + 2t) + 2(n + 3 + 2t) + 2(n + 4 + 2t) + 2(n + 5 + 2t)]…………(4.12) 

Generalizing from above Fig. 1 to Fig. 2, for m number of cycles, the n-bridge connected cycle graphs can 

be drawn as shown in Fig. 8.  

 

 
Figure.8:  n-bridge connected  graphs 

From equations Eq. (4.5) to Eq. (4.12) we observe that Cm(Un) cycles adheres the following sequence 

pattern. 

When m is odd, m ≥ 5. Let k = 2, 3, 4, .... 

m = 5           (1  2  2) 

m = 7           (1  2  2  2) 

m = 9           (1  2  2  2  2) 

. 

. 
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. 

m= 2k + 1         (1  2  2  2  2  2….k times) 

When m is even, m ≥ 4. Let k = 2, 3, 4, .... 

m = 4           (1  2  1) 

m = 6           (1  2  2  1) 

m = 8          (1  2  2  2  1) 

. 

. 

. 

m= 2k         (1  2  2  2  2  2….k-1  times  1) 

Hence the general term is obtained using the above cases. 

5. The Wiener index of n-bridge connected Star graphs , m is odd or even: 

Example 5.1:  

5.1.1. The Wiener index of n-bridge connected  graphs:   

Let G1, G2, G3, ..., Gn be two non-overlapping S3 graph with vertex sets {u1, u2, u3} and {v1, v2, v3} , 

..., {z1, z2, z3} respectively. Two graphs W (G1) +2 W (G2) is obtained by joining (n−1) degree vertex of 

G1, say u1 to (n −1) degree vertex of G2 by new edge. n-bridge-connected graphs W (G1) +2 W (G2) 

+3W (G3) +4 ... +n W (Gn) is obtained by joining single edge that has end point with degree (n−1) in W 

(G1)+2W (G2)+3...+n−1W (Gn−1) and Gn horizontally. Therefore there exists a single edge whose end 

points with degree (n − 1) lies in every pair of stars (G1, G2, ...Gn) (except the end stars) which are 

bridge connected systematically arranged in horizontal manner. Since, W (S3) = (3 − 1)2 = 4, we have n 

copies of S3, 

Then W (Gi) = 4, i = 1, 2, ...,n 

 

 
Since W (G1) +2 W (G2) +3 ... +n−1 W (Gn−1) and W ( Gn) are connected by an edge (y1, z1), 

 

 

 
Figure.9:  n-bridge connected  graphs 

 

 

 
= d(z1, u1) + ... + d(z1, u3)  

+ d(z2, u1) + ... + d(z2, u3) 

+d(z3, u1) + ... + d(z3, u3) 

=(n −1)+2(3−1)n +(3−1)2(n + 1)=S3(Un),(say)  

W(G1)+W(G2)+...+W(Gn) = nW (S3)+(n−1)U2 +(n−2)U3 +...+Un …………(5.1) 

5.1.1. The Wiener index of n-bridge connected  graphs:   
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Figure.10:  n-bridge connected  graphs 

 

From the above result, Since, W (S4) = (4 − 1)2 = 9, we have n copies of S4, 

Then W (Gi) = 4, i = 1, 2, ..., n 

W (G1)+W (G2)+...+W (Gn) = 

nW (S4)+(n−1)U2 +(n−2)U3 +...+Un …….(5.2) 

where,  

S4(Un) = (n − 1) + 2(4 − 1)n + (4 − 1)2(n + 1) 

5.1.2. The Wiener index of n-bridge connected  graphs: 

 

 
Figure.11:  n-bridge connected  graphs 

From the above result, Since, W (S5) = (5 − 1)2 = 25, we have n copies of S5, 

Then W (Gi) = 4, i = 1, 2, ..., n 

W (G1)+W (G2)+...+W (Gn) = 

nW (S5)+(n−1)U2 +(n−2)U3 +...+Un …….(5.2) 

where,  

S5(Un) = (n − 1) + 2(5 − 1)n + (5 − 1)2(n + 1) 

5.1.3. The Wiener index of n-bridge connected  graphs:   

 

 
Figure.12:  n-bridge connected  graphs 

 

From the above result, Since, W (S5) = (6 − 1)2 = 36, we have n copies of S6, 

Then W (Gi) = 4, i = 1, 2, ..., n 

W (G1)+W (G2)+...+W (Gn) = 

nW (S6)+(n−1)U2 +(n−2)U3 +...+Un …….(5.2) 

where,  

S6(Un) = (n − 1) + 2(6 − 1)n + (6 − 1)2(n + 1) 

 

5.1.4. Theorem 5.1: 

Let G1, G2, ..., Gn be n distinct non-overlapping star graphs, Sm, m ≥ 3 with vertex sets {u1, u2, ..., 

um} , {v1, v2, ..., vm} , {w1, w2, ..., wm} ...,{z1, z2, ..., zm} respectively. These n-graphs are n − 1 connected 

by an edge between every pair of stars, except the pair G1, Gn to form a single graph. Then, 

 W (G1 + G2 + G3 + ... + Gn)= nW (Sm)  

+ (n − 1)Sm(U2) + (n − 2)Sm(U3) + ... + Sm(Un) 
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where  

Sm(Un) = (n − 1) + 2(m − 1)n + (m − 1)2(n + 1) 

Proof: 

Let G1, G2, G3..., Gn be n non-overlapping Sm graph with vertex sets{u1, u2, ..., un} and {v1, v2, ..., vn} , 

..., {z1, z2, ..., zn} respectively. Two graphs W (G1) +2 W (G2) is obtained by joining (n − 1) degree 

vertex of G1, say u1 to (n − 1) degree vertex of G2 by new edge. n-bridge-connected graphs W (G1) +2 W 

(G2)+3W (G3)+4...+nW (Gn) is obtained by joining single edge of star graph that has end point with 

degree (n − 1) in W (G1)+2 W (G2)+3 ... +n−1 W (Gn−1) and Gn horizontally. Therefore there exists a single 

edge whose end points with degree (n − 1) lies in every pair of stars (G1, G2, ...Gn) (except the end stars) 

which are bridge connected systematically arranged in horizontal manner. 

The Wiener index of these graphs is calculated by considering 2 at a time, then 3 at a time and 

proceeding in this way it is able to calculate the distances of all Sm graphs. Generalizing from above Fig. 

9 to Fig. 12, for m number of stars, the n-bridge connected star graphs can be drawn as shown in Fig. 8.  

 

 
Figure.12:  n-bridge connected  graphs 

 

From the above example, we get, for m ≥ 3, either m is odd or even, 

W (G1) + W (G2) = 2W (Sm) + Sm(U2) 

W (G1) + W (G2) + W (G3) =  

3W (Sm) + 2Sm(U2) + Sm(U3) 

W (G1) + ... + W (G4) =  

4W (Sm) + 3Sm(U2) + 2Sm(U3) + Sm(U4) 

. 

. 

. 

W (G1)+...+W (Gn) = nW (Sm)+(n−1)Sm(U2) +(n−2)Sm(U3)+...+Sm(Un) 

where  

Sm(Un) = (n − 1) + 2(m − 1)n + (m − 1)2(n + 1) 

Hence the general term can be obtained using the above theorem, 

That is, W (G1 + G2 + G3 + ... + Gn) 

= W (G1) + W (G2) + ... + W (Gn) 

+W (G1 +2 G2) + W (G2 +2 G3) + ... + 

 W (Gn−1 +2 Gn) +W (G1 +2 G2 +3 G3)+ 

W (G2 +2 G3 +3 G4)+...+ 

W (Gn−2 +2 Gn−1 +3 Gn) 

+..... + W (G1 +2 G2 +3 .... +N Gn) 

=n W(Cm) + 
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where n = 1, 2, ..., ∞ and i1, i2, ...ik = 1, 2, ..., N respectively. 

 

6. Application: 

The human brain comprises 86 billion neurons connected through 150 trillion synapses that allow neurons to 

transmit electrical or chemical signals to other neurons [12]. The study of brain network using graph theory 

has been introduced by Sporns et al., [14] . 

Graph theory can be related to model the communications between elements (nodes) of a network. In view of 

this a star graph resembles neural structure which can be applied to effective connectivity between every pair 

of nodes however long the neural structure may be. To access the topological pattern of these neural structure, 

wiener index plays a vital role in studying brain network. The complex structure of human brain can be 

studied with the help of highly connected nodes. To study the integration and segregation of network, in 

which there is a large distance between nodes, wiener index helps to reach any node from any other nodes 

irrespective of large length. Assortativity quantifies network resilience against random or deliberate damages 

in the main components, which is one of the most significant issues in network science [11]. The assortativity 

index measures the extent to which a network can resist failures in its main components (i.e., its vertices and 

edges). Notably, communication between hubs in assortative networks leads to covering each other’s 

activities, but the performance in disassortative networks will drop sharply due to the presence of vulnerable 

hubs [5]. 

 
Courtesy: Frontiers in chemistry (Farahani et al.) 

 

The cluster of star graphs taken in the above sections can be compared to the disassortative networks. Human 

intelligence can be related to brain imaging studies by analysing structure and functions of nodes when it is 

spatially distributed and shorter path length and this can be possible by finding the wiener index between these 

nodes. As the intelligent quotient is positively correlated with nodal properties and their distances, one can 

able to analyse the signals passing between these nodes and the general intelligence can be analysed using the 

n-bridge connected star graphs. 

 

7. Conclusion: 

In this paper Wiener index of n-bridge connected Cycle graph has been generalised for Cm graphs which has 

enormous applications in finding the distance between molecules of similar structure taken in this paper. 

Similarly, Wiener index of n-bridge connected Star graph has been generalised for Sm graphs which have 

extended applications in neural sciences. 
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